Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Polycyclic Aromatic Compounds ; 2023.
Article in English | Scopus | ID: covidwho-20240347

ABSTRACT

In this study, in silico SARS-CoV-2 inhibitory potential of 19 marine algal polycyclic aromatic compounds plus three commercial anti-viral drug were validated comparatively against three target proteins. Among 19 marine algal compounds apigenin-7-O-neohesperidoside,dieckol, luteolin-7-rutinoside, oxoglyantrypine, hydroxypentafuhalol A, and pseudopentafuhalol B exhibited good binding affinity of toward all three screened targets (Mpro, RdRp, and spike protein) of SARS-CoV-2 shortlisted for further In silico virtual screening analysis. Complete docking interaction analysis indicates that apigenin-7-O-neohesperidoside, dieckol, luteolin-7-rutinoside compounds display very excellent binding and inhibitory potential against the all three screened targets of SAR-CoV-2 among 19 screened marine algal compounds than standard anti-viral drugs. DFT analysis affirms the essential Homo-Lumo orbital energies of apigenin-7-O-neohesperidoside to inhibit targets of SARS-CoV-2. Further in silico analysis confirmed three chosen marine algal compounds are showing their excellent pharmacokinetic and molecular electrostatic potentials (MEPs) toward targets of SARS-CoV-2. MD simulation analysis of three chosen marine algal compounds possesses best simulation trajectories toward the binding pocket of target proteins essential to inhibit SARS-CoV-2 multiplication comparatively standard anti-viral drugs possess lesser binding affinity. However, further human clinical trials are necessary to justify their clinical pertinence. © 2023 Taylor & Francis Group, LLC.

2.
IOP Conference Series. Earth and Environmental Science ; 1167(1):012011, 2023.
Article in English | ProQuest Central | ID: covidwho-2325261

ABSTRACT

Urbanization of coastal areas worldwide has increased due to an increase in the global population. The production of sustainable aquaculture is greatly impacted by a surge of this urbanization. In certain countries, particularly for individuals with more limited space in metropolitan areas, such as along Johor's coastal area, aquaculture might well be a good strategy to maintain food availability (continuous production plus high-quality meals). Consequently, the adoption of aquaculture along the Johor's coastal area has lead to Harmful Algal Blooms (HAB). This paper examines the evolution of the aquaculture industry of Malaysian Johor coastal areas in relation to HABs. In addition to HABs, the aforementioned metropolitan regions confront diverse economic and geographical obstacles when attempting to increase their aquaculture production sustainably. Those problems are therefore addressed using a variety of operations as well as surveillance techniques in this brief overview. Lockdowns and border prohibitions caused by the continuous COVID-19 infection have had a global impact. These logistical difficulties in the seafood industry have increased dependency on imported supplies. It is suggested that international decision- making, supervision, and knowledge exchange can successfully solve the challenges urbanized areas have in ensuring sustainable food security through the evolution within the aquaculture sector.

3.
Algae Materials: Applications Benefitting Health ; : 279-284, 2023.
Article in English | Scopus | ID: covidwho-2315075

ABSTRACT

Owing to special fascinating properties of algae material, it is widely used in food, paper, and textile industries. More promisingly, in clinical applications, algae material can be used as medical implants and devices to promote healing and serve as a carrier for cells during human tissues regeneration process. Nowadays, due to the correlated limitations (such as (1) gelating into soft structure in contact with physiological environment resulted in the failure of the soft tissue regeneration;(2) inappropriate applying in the relevant load bearing body parts), algae material exploration is insufficient in biomedical applications. To solve this problem, the scientific studies devoted to the application of algae material in clinical practice have been explored. To enhance mechanical properties, ameliorate healing capability, and promote tissue regeneration, drug release, and cell viability, algae material and related techniques for clinical applications are therefore marked along with the discussion of the latest trend related to COVID-19. © 2023 Elsevier Inc. All rights reserved.

4.
Journal of Environmental Engineering (United States) ; 149(6), 2023.
Article in English | Scopus | ID: covidwho-2298448

ABSTRACT

Escherichia coli O157:H7 is a major cause of foodborne disease outbreaks throughout the world, while methicillin-resistant Staphylococcus aureus (MRSA) is responsible for many difficult-to-treat infections in humans. Ultraviolet (UV) irradiation is commonly used for disinfection in food processing, medical facilities, and water treatment to prevent the transmission of these pathogen. With increased use of UV disinfection technologies over the last few years because of COVID-19 and concerns about other communicable disease, it has become a concern that microbial species could develop tolerance to UV irradiation, especially when it is applied continuously. To elucidate the effect of continuous UV exposure at different wavelengths and power levels on the tolerance development of bacteria, Escherichia coli O157:H7 and MRSA)USA300 growths were investigated by continuously exposing inoculated agar plates to six different commercially available UV sources at wavelengths of 222 nm, 254 nm, 275 nm, and 405 nm. The agar plates in these experiments were partially covered by a thin acrylic sheet, which provided either complete protection from the UV to the cells directly under the sheet, no protection if significantly away from the sheet, or partial protection near the edges of the sheet due to shading or small amounts of UV reflection under the sheet at the edges. In these experiments, tolerant cells of E. coli and S. aureus were found from the 222 nm, the 405 nm, and one of the 254 nm sources. Upon examination of the power of each UV source, it was shown that the 275 nm and 254 nm sources that resulted in no tolerant cells had surface power densities [at 25 cm (10 in.)] that were more than 10-200 times greater than those that had tolerant cells. These results suggests that bacterial cells have a higher chance to develop UV tolerance under lower power UV sources (under the experimental conditions in our laboratory). Genome investigation of the tolerant colonies revealed that there are no significant differences between the cells that developed tolerance and the original organism, hinting at the need to explore the role of epigenetics mechanisms in the development of UV tolerance in these bacteria. © 2023 American Society of Civil Engineers.

5.
J Biomol Struct Dyn ; : 1-16, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-2300248

ABSTRACT

Marine species are known as rich sources of metabolites largely involved in the pharmaceutical industry. This study aimed to evaluate in silico the effect of natural compounds identified in algae on the SARS-CoV-2 Main protease, RNA-dependent-RNA polymerase activity (RdRp), endoribonuclease (NSP15) as well as on their interaction with viral spike protein. A total of 45 natural compounds were screened for their possible interaction on SARS-CoV-2 target proteins using Maestro interface for molecular docking, molecular dynamic (MD) simulation to estimate compounds binding affinities. Among the algal compounds screened in this study, three (Laminarin, Astaxanthin and 4'-chlorostypotriol triacetate) exhibited the lowest docking energy and best interaction with SARS-CoV-2 viral proteins (Main protease, RdRp, Nsp15, and spike protein). The complex of the main protease with laminarin shows the most stable RMSD during a 150 ns MD simulation time. Which indicates their possible inhibitory activity on SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

6.
Energies ; 16(3):1446, 2023.
Article in English | ProQuest Central | ID: covidwho-2289096

ABSTRACT

The increasing concentration of anthropogenic CO2 in the atmosphere is causing a global environmental crisis, forcing significant reductions in emissions. Among the existing CO2 capture technologies, microalgae-guided sequestration is seen as one of the more promising and sustainable solutions. The present review article compares CO2 emissions in the EU with other global economies, and outlines EU's climate policy together with current and proposed EU climate regulations. Furthermore, it summarizes the current state of knowledge on controlled microalgal cultures, indicates the importance of CO2 phycoremediation methods, and assesses the importance of microalgae-based systems for long-term storage and utilization of CO2. It also outlines how far microalgae technologies within the EU have developed on the quantitative and technological levels, together with prospects for future development. The literature overview has shown that large-scale take-up of technological solutions for the production and use of microalgal biomass is hampered by economic, technological, and legal barriers. Unsuitable climate conditions are an additional impediment, forcing operators to implement technologies that maintain appropriate temperature and lighting conditions in photobioreactors, considerably driving up the associated investment and operational costs.

7.
Dhaka University Journal of Earth and Environmental Sciences ; 10(3):1-198, 2022.
Article in English | CAB Abstracts | ID: covidwho-2247203

ABSTRACT

This special issue contains 17 papers covering a range of topics related to environmental, geological, and social issues in Bangladesh. The articles use various methodologies, including statistical analysis, satellite imaging, and case studies, to explore issues such as drought, urbanization, healthcare, greenhouse gas emissions, groundwater resources, COVID-19 stigmatization, oil rim reservoir development, coal permeability, seaweed composition, hailstorms, tropical cyclones, heavy metal contamination, flood hazard assessment, and climate change vulnerability. Overall, the articles provide valuable insights and information that can inform policy and decision-making in Bangladesh.

8.
Geoheritage ; 15(1), 2023.
Article in English | ProQuest Central | ID: covidwho-2209551

ABSTRACT

The conversion of wild caves into tourist sites poses serious threats to the conservation of subterranean environments. Among them, the extensive growth of photosynthetic biofilms induced by artificial lighting—the so-called lampenflora—is of particular concern for cave managers. The identification of cost-effective management actions controlling the growth of lampenflora is therefore required to preserve the environmental and touristic values of show caves. By taking advantage of the closure period imposed to contain the COVID-19 pandemic, we tested whether 6 months of cave closure could be an effective strategy to reduce the concentration of photosynthetic biofilms on speleothems in four geographically close Italian show caves. We compared the concentration of the three main microorganism groups composing lampenflora, i.e., cyanobacteria, diatoms, and green algae, measured in September 2020 with values recorded 6 months after the closure, in May 2021. Although slight variations have been observed across the different sampling sessions, we did not detect any significant effect of the closure period on the overall concentration values of lampenflora. Also, we recorded no significant differences in lampenflora concentration after 4 months of regular tourist use, in September 2021. Our results suggest that management practices based on regulating visits to show caves are not effective strategies to reduce lampenflora. Therefore, management practices aiming at a sustainable use of show caves should focus on the active removal of photosynthetic biofilms.

9.
Huanjing Kexue/Environmental Science ; 43(12):5522-5533, 2022.
Article in Chinese | Scopus | ID: covidwho-2203843

ABSTRACT

During the CIVID-19 pandemic, water samples were collected from 26 sampling points in 18 typical drinking water sources in Wuhan, located in the middle reaches of the Yangtze River. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were used to measure the concentrations of 31 pharmaceuticals and personal care products (PPCPs) in the water samples. The pollution characteristics of PPCPs were analyzed and their ecological and health risks were assessed. The results showed that a total of 23 PPCPs were detected in the 26 sampling points. Among them, five types of PPCPs were detected with a detection rate of 100%, with total concentrations ranging from 102.44 ng•L -1 to 745.78 ng•L -1, and the average concentration was 206.87 ng•L -1. The highest concentrations were in salicylic acid (SA) and doxycycline (DIC), ranging from 28.24 to 534.24 ng•L -1 and 28.72 to 416.6 ng•L -1, respectively. According to the spatial distribution of PPCPs, the concentration of antibiotics in the Hanjiang River was higher than that in the Yangtze River, whereas the concentration of other types of PPCPs in the Yangtze River was higher than that in the Hanjiang River. The ecological risk assessment results showed that the toxic risk in algae was higher than those in invertebrates and fish. The risks of salicylic acid (SA), doxycycline (DIC), lincomycin (LIN), and chlortetracycline (CTE) to algae were at a high level, and the ecological risk of PPCPs in the Hanjiang River was generally higher than that in the Yangtze River. The health risk assessment results showed that the risk to adults and children by drinking water ranged from 1.14 × 10 -4 to 0.136 and from 1.04 × 10 -4 to 0.821, respectively. The health risk to children was higher than that to adults, although their levels were low. Compared with the concentrations of PPCPs in drinking water sources of Wuhan in recent years, under the CIVID-19 pandemic, the pollution status of PPCPs in the Yangtze River was at a medium level, whereas it was at a high level in the Hanjiang River. © 2022 Science Press. All rights reserved.

10.
Crit Rev Biotechnol ; : 1-18, 2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2186995

ABSTRACT

Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.

11.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2110124

ABSTRACT

Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.


Subject(s)
Agaricales , COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Agaricales/chemistry , Pandemics , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Cholesterol/therapeutic use
12.
Annals of Phytomedicine-an International Journal ; 10:29-40, 2021.
Article in English | Web of Science | ID: covidwho-2072558

ABSTRACT

The exploration for various effective antiviral agents is pressing issue regarding the histrionic circumstances of the global COVID pandemic, a blowout of SARS-CoV-2 virus disease. Actual antiviral remedies are not existing at present and the agreed remedy available for COVID somewhat has not been well recognized yet. In these circumstances, there is a need of more consideration which should be given to the exploration for all possible antiviral agents existing in nature. Though, the algae (marine/fresh water) are one of the richest reservoirs of bioactive complexes yet they are sporadically been studied as antiviral agents. In past, the bioactive compounds of algal origin have demonstrated remarkable in vitro antiviral activity against the HIV and HCV. The present article recapitulates the antiviral possessions of algae or their extracts that have been studied in several in vitro/in vivo animal system-based studies, with the aim that the vast algal diversity should get the due attentions related to the deterrence of SARS-CoV-2.

13.
Harmful Algae ; 118: 102287, 2022 10.
Article in English | MEDLINE | ID: covidwho-2061194

ABSTRACT

A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L - 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.


Subject(s)
Haptophyta , Animals , Fishes , Genetic Markers , Haptophyta/genetics , Nitrates , Phosphates , RNA, Ribosomal, 18S/genetics
14.
BMC Complement Med Ther ; 22(1): 242, 2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2043124

ABSTRACT

BACKGROUND: Ecklonia cava is an edible marine brown alga harvested from the ocean that is widely consumed in Asian countries as a health-promoting medicinal food The objective of the present study is to evaluate the anti-asthma mechanism of a new functional food produced by bioprocessing edible algae Ecklonia cava and shiitake Lentinula edodes mushroom mycelia and isolated fractions. METHODS: We used as series of methods, including high performance liquid chromatography, gas chromatography, cell assays, and an in vivo mouse assay to evaluate the asthma-inhibitory effect of Ecklonia cava bioprocessed (fermented) with Lentinula edodes shiitake mushroom mycelium and its isolated fractions in mast cells and in orally fed mice. RESULTS: The treatments inhibited the degranulation of RBL-2H3 cells and immunoglobulin E (IgE) production, suggesting anti-asthma effects in vitro. The in vitro anti-asthma effects in cells were confirmed in mice following the induction of asthma by alumina and chicken egg ovalbumin (OVA). Oral administration of the bioprocessed Ecklonia cava and purified fractions suppressed the induction of asthma and was accompanied by the inhibition of inflammation- and immune-related substances, including eotaxin; thymic stromal lymphopoietin (TSLP); OVA-specific IgE; leukotriene C4 (LTC4); prostaglandin D2 (PGD2); and vascular cell adhesion molecule-1 (VCAM-1) in bronchoalveolar lavage fluid (BALF) and other fluids and organs. Th2 cytokines were reduced and Th1 cytokines were restored in serum, suggesting the asthma-induced inhibitory effect is regulated by the balance of the Th1/Th2 immune response. Serum levels of IL-10, a regulatory T cell (Treg) cytokine, were increased, further favoring reduced inflammation. Histology of lung tissues revealed that the treatment also reversed the thickening of the airway wall and the contraction and infiltration of bronchial and blood vessels and perialveolar inflammatory cells. The bioprocessed Ecklonia cava/mushroom mycelia new functional food showed the highest inhibition as compared with commercial algae and the fractions isolated from the bioprocessed product. CONCLUSIONS: The in vitro cell and in vivo mouse assays demonstrate the potential value of the new bioprocessed formulation as an anti-inflammatory and anti-allergic combination of natural compounds against allergic asthma and might also ameliorate allergic manifestations of foods, drugs, and viral infections.


Subject(s)
Agaricales , Anti-Allergic Agents , Anti-Asthmatic Agents , Asthma , Phaeophyta , Shiitake Mushrooms , Aluminum Oxide/adverse effects , Animals , Anti-Allergic Agents/adverse effects , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Cytokines/metabolism , Immunoglobulin E , Inflammation/drug therapy , Interleukin-10 , Leukotriene C4/adverse effects , Mice , Mice, Inbred BALB C , Mycelium , Ovalbumin/adverse effects , Phaeophyta/metabolism , Prostaglandin D2/adverse effects , Shiitake Mushrooms/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects
15.
Pharmacognosy Reviews ; 16(32):62-69, 2022.
Article in English | CAB Abstracts | ID: covidwho-2002632

ABSTRACT

Edible vaccines are created from transgenic plants and animals and contain immunostimulant. Edible vaccines, to put it simply, are medications generated from plants or animals. In underdeveloped countries, oral vaccines are less expensive and more widely available. Researchers came up with the idea of edible vaccines, in which edible plant pieces are employed as a vaccine factory. To make edible vaccinations, scientists put desired genes into plants and then force the plants to generate the proteins expressed in the genes. Transgenic plants are the result of transformation, whereas transformation is the act of converting plants. The edible vaccination promotes mucosal immunity. Dendritic cells in the gut can assist native T cells activate and differentiate into follicular T-helpers (Tfh). T and B cells will respond precisely to a reliable, digestible immunization. Potato, tomato, banana, carrots, tobacco, papaya, algae, and a variety of other plants are utilised as alternative agents for standard vaccinations. Malaria, cholera, hepatitis, rabies, measles, rotavirus, diarrhoea cancer treatments and treatment of covid-19 are among the illnesses for which plant-based vaccines have been created. It takes time and dedication to develop and sell edible vaccinations. Many edible vaccines for animal and human ailments have been developed and have gone through various levels of clinical testing. The importance of plant-based vaccinations is emphasized in this article.

16.
Asia & the Pacific Policy Studies ; 9(2):147-164, 2022.
Article in English | ProQuest Central | ID: covidwho-1981572

ABSTRACT

This purpose of this article is to demonstrate (1) how growing seaweed in the central Philippines is affected by multifaceted local dynamics and (2) how it is also dependent on the complementary livelihood strategies of in situ and ex situ diversification. This article explores the livelihood trajectories of 45 households that were all engaged in growing seaweed in 2015. Surveys and semi‐structured interviews were conducted with households and key informants in two municipalities. Results reveal a process of livelihood divergence. While in one municipality growing seaweed has become a relative success, virtually all households in the other municipality have had to stop growing seaweed, returned to fishing, and remained poor. The reasons for this divergence can be found in the spheres of environmental challenges, value chain governance dynamics, and local coastal governance. Three implications are put forward that could improve the inclusiveness of coastal development in the Philippines and beyond.

17.
Postepy Fitoterapii ; 1:33-39, 2022.
Article in Polish | CAB Abstracts | ID: covidwho-1975716

ABSTRACT

Lutein and astaxanthin belong to carotenoids which have wide applications in food, nutraceutical and pharmaceutical industries. The total chemical syntheses of lutein and astaxanthin produces a mixture of stereoisomers. Both carotenoids are extracted from the plant material as the mixture of mono- and diesters. Lutein is extracted from marigold and tagetes flowers. Lutein supplementation increases its concentration in blood serum and in the macula of the eye. There is increasing evidence that lutein is important in the prevention of age-related macular degeneration (AMD) and may improve eye health. Astaxanthin is extracted from the Haematococcus pluvialis algae. Due to its strong antioxidant, anti-inflammatory, and immunomodulatory properties, they can be used to support the treatment of neurodegenerative and cardiovascular diseases, diabetes, eye diseases, and to supplement the diet of COVID-19 patients.

18.
Journal of International Dental and Medical Research ; 15(2):899-903, 2022.
Article in English | ProQuest Central | ID: covidwho-1918870
19.
Journal of Hazardous Materials Advances ; : 100121, 2022.
Article in English | ScienceDirect | ID: covidwho-1914424

ABSTRACT

Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.

20.
Aquaculture: an introductory text ; 4(347), 2022.
Article in English | CAB Abstracts | ID: covidwho-1900772

ABSTRACT

This 4th edition covers issues associated with sustainable aquaculture development, culture systems, hatchery methods, nutrition and feeding of aquaculture species, reproductive strategies, harvesting, and many other topics. While its main focus is on the culture of fish, molluscs and crustaceans for food, the book also covers other forms of aquaculture, such as the production of seaweeds, recreational fish and ornamental species, as well as live foods, such as algae and rotifers that are used to feed larval shrimp and marine fish. Thoroughly updated and revised, this essential textbook now includes increased coverage of open-ocean cage culture and sea lice issues with salmon culture, coverage of the significant progress made in nutrition, including the move away from fishmeal as protein and fish oil as lipids in feed, information on biofloc technology uses, predictive impacts of climate change, probiotics, and the impact of COVID-19 on the aquaculture community, and updated aquaculture production statistics and lists of approved anaesthetics. Aquaculture remains one of the most rapidly growing agricultural disciplines, and this book remains an essential resource for all students of aquaculture and related disciplines.

SELECTION OF CITATIONS
SEARCH DETAIL